Appearance
question:According to the standard convention for exponentiation, [3^{3^{3^{3}}} = 3^{(3^{(3^3)})} = 3^{27}.] If the order in which the exponentiations are performed is changed, how many other values are possible? textbf{(A) } 0qquad textbf{(B) } 1qquad textbf{(C) } 2qquad textbf{(D) } 3qquad textbf{(E) } 4
answer:The expression 3^{3^{3^{3}}} can be parenthesized in the following ways: 1. 3^{(3^{(3^3)})} 2. 3^{((3^3)^3)} 3. ((3^3)^3)^3 4. (3^{(3^3)})^3 5. (3^3)^{3^3} We will evaluate each case: 1. **3^{(3^{(3^3)})}**: [ 3^{(3^{27})} = 3^{7625597484987} ] This is the original expression given in the problem. 2. **3^{((3^3)^3)}**: [ 3^{(27^3)} = 3^{19683} ] 3. **((3^3)^3)^3**: [ (27^3)^3 = 19683^3 ] 4. **(3^{(3^3)})^3**: [ (3^{27})^3 = 7625597484987^3 ] This is different from case 3. 5. **(3^3)^{3^3}**: [ 27^{3^3} = 27^{27} ] From the evaluations, we see that there are three distinct values: 3^{7625597484987}, 3^{19683}, and 19683^3. Therefore, there are two other possible values aside from the original one. Thus, the answer is textbf{(C) 2}. The final answer is boxed{textbf{(C) } 2}
question:f x=4 and y=5, express the value of the following as a common fraction: frac {~frac{1}{x+y}~} {frac{1}{xy}}
answer:We start by simplifying the expression: [ frac{frac{1}{x+y}}{frac{1}{x-y}} = frac{1}{x+y} cdot frac{x-y}{1} = frac{x-y}{x+y} ] Substitute the values of x and y: - x = 4 - y = 5 So, [ frac{4-5}{4+5} = frac{-1}{9} = boxed{-frac{1}{9}} ] Conclusion: With the given values x = 4 and y = 5, the computation is straightforward and leads to the exact expression of the fraction, yielding a valid and correct result -frac{1}{9}.
question:Simplify the expression frac{15b^4 45b^3}{75b^2} when b=2.
answer:First, identify the common factors in the numerator and denominator. The numbers 15, 45, and 75 have a common factor of 15, and the terms b^4 and b^3 have b^2 as a common factor in all terms. Starting with the numbers: - frac{15b^4 - 45b^3}{75b^2} = frac{15(b^4 - 3b^3)}{75b^2} = frac{15 cdot b^2(b^2 - 3b)}{75b^2}. Now cancelling the common factors: - = frac{cancel{15} cdot cancel{b^2}(b^2 - 3b)}{5 cdot cancel{15} cdot cancel{b^2}} = frac{b^2 - 3b}{5}. Replace b with 2: - = frac{(2^2) - 3(2)}{5} = frac{4 - 6}{5} = frac{-2}{5}. Thus, the simplified value is boxed{-frac{2}{5}}.
question:triangle (ABC), perpendiculars are erected at vertex (A) to (AB) and (AC) which intersect side (BC) at points (B') and (C'). Express the distance (B'C') in terms of the elements of the original triangle and calculate the radius of the circle inscribed in triangle (AB'C').
answer:We are given a triangle ( triangle ABC ) with vertices ( A, B, ) and ( C ). We need to determine the distance ( B'C' ) where ( B' ) and ( C' ) are the points where the perpendiculars from ( A ) to ( AB ) and ( AC ) respectively, intersect ( BC ). Step 1: Use of the Sine Rule in Triangles ( ABC' ) and ( ACB' ) By applying the Sine Rule in triangles ( triangle ABC' ) and ( triangle ACB' ), we get: [ BC' = frac{c cos alpha}{cos gamma} quad text{and} quad CB' = frac{b cos alpha}{cos beta} ] Step 2: Expression for ( B'C' ) Using the results from Step 1, the distance ( B'C' ) can be expressed as: [ B'C' = BC' + a + CB' = a + frac{b cos alpha}{cos beta} + frac{c cos alpha}{cos gamma} ] Step 3: Simplify the Expression for ( B'C' ) We can factor out common terms and simplify: [ B'C' = a + frac{b cos alpha}{cos beta} + frac{c cos alpha}{cos gamma} ] [ = frac{a cos beta cos gamma + b cos alpha cos gamma + c cos alpha cos beta}{cos beta cos gamma} ] [ = frac{a cos beta cos gamma + cos alpha (b cos gamma + c cos beta)}{cos beta cos gamma} ] Since ( a cos alpha = b cos beta cos gamma + c cos beta cos gamma ): [ B'C' = frac{a cos alpha + a cos beta cos gamma}{cos beta cos gamma} ] [ = frac{a (cos alpha + cos beta cos gamma)}{cos beta cos gamma} ] Using the trigonometric identity ( cos(alpha + beta) = cos alpha cos beta - sin alpha sin beta ): [ = a frac{sin beta sin gamma}{cos beta cos gamma} = a tan beta tan gamma ] Conclusion: The distance ( B'C' ) is given by: [ boxed{a tan beta tan gamma} ] Find the Circumradius ( r ) of ( triangle AB'C' ): Let the circumradius be ( r ), and the center of circumcircle be ( O ). Step 1: Area of ( triangle AB'C' ) Using the product of sines for the area ( Delta ) and rearranging, we get: [ frac{1}{2} B'C' cdot r = frac{1}{2} Y_{perp} (C'B') K ] [ B'C'r = frac{B'C' sin B'}{sin left(B' + C'right)} cdot frac{B'C' sin C'}{sin left(B' + C'right)} sin left(B' + C'right) ] [ r = frac{B'C' sin left(45^circ - frac{beta}{2}right) sin left(45^circ - frac{gamma}{2}right)}{cos left(frac{beta + gamma}{2}right)} ] Since: [ B' = 90^circ - beta, quad C' = 90^circ - gamma, ] We substitute these into the expression for ( r ): [ r = frac{a tan beta tan gamma sin left(45^circ - frac{beta}{2}right) sin left(45^circ - frac{gamma}{2}right)}{cos frac{beta + gamma}{2}} ] Conclusion: The circumradius ( r ) is given by: [ boxed{a tan beta tan gamma sin left(45^circ - frac{beta}{2}right) sin left(45^circ - frac{gamma}{2}right)} ]